Sparse and Low-rank Methods for Structural Identification and SHM

نویسنده

  • Satish Nagarajaiah
چکیده

Recent advances in Statistical Learning techniques have enabled the development of new algorithms for monitoring, data cleansing, data compression, structural identification, damage identification, and structural dynamics in general. This keynote presents novel sparse and low-rank methods to address the inverse problems in structural dynamics, identification, and data-driven health monitoring. In particular, the emerging mathematical tools such as sparse representation (SR) and compressed sensing (CS), as well as the unsupervised multivariate blind source separation (BSS), are used to harness the structural dynamic features and damage information intrinsic within the structural vibration response measurement data, which is found to have sparse and low-rank structure. Data-driven approaches are developed towards rapid, unsupervised, and effective system identification, damage detection, as well as massive SHM data management.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Deployment of a Smart Structural Health Monitoring System for Long-Span Arch Bridges: A Review and a Case Study

Structural health monitoring (SHM) technology for surveillance and evaluation of existing and newly built long-span bridges has been widely developed, and the significance of the technique has been recognized by many administrative authorities. The paper reviews the recent progress of the SHM technology that has been applied to long-span bridges. The deployment of a SHM system is introduced. Su...

متن کامل

The Application of Wavelet Threshold on Compressive Sensing in Wireless Sensor Networks

Compressive sensing (CS) is a novel framework which exploits both the sparsity and the intra-correlation of the signal in structural health monitoring (SHM) based on wireless sensor networks (WSNs). It contains sparse signal representation, the measurement matrix selection and the reconstruction algorithm. The SHM signal is recovered by M measurements following the restricted isometry constant ...

متن کامل

Compressive sampling for accelerometer signals in structural health monitoring

In structural health monitoring (SHM) of civil structures, data compression is often needed to reduce the cost of data transfer and storage, because of the large volumes of sensor data generated from the monitoring system. The traditional framework for data compression is to first sample the full signal and, then to compress it. Recently, a new data compression method named compressive sampling...

متن کامل

A Nonconvex Free Lunch for Low-Rank plus Sparse Matrix Recovery

We study the problem of low-rank plus sparse matrix recovery. We propose a generic and efficient nonconvex optimization algorithm based on projected gradient descent and double thresholding operator, with much lower computational complexity. Compared with existing convex-relaxation based methods, the proposed algorithm recovers the low-rank plus sparse matrices for free, without incurring any a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016